

Proyecto Therm2: Valorización Energética de Residuos Orgánicos y Economía Circular mediante Digestión Anaerobia Avanzada

Caldite Digestion Anacioni

Otros autores: Pérez Elvira, Sara I. [Universidad de Valladolid] - Garvi Higueras, Mª Dolores [Universidad de Sevilla]

Autor: Sánchez Rembado, Alejandro [EMASESA]

Fernández Polanco, Diego [teCH4+] - Arnau Notari, Roario [FACSA-Hydrens]

Consorcio:

Las Estaciones Depuradoras de Aguas Residuales (EDAR) juegan un papel decisivo en la transición del metabolismo urbano hacia una economía circular ya que, mediante Digestión Anaerobia Mesófila (DAM), transforman residuos orgánicos en energía renovable (biogás) y subproductos valorizables (digestato). El Proyecto Therm2, da un paso más, incorporando la Digestión Anaerobia Termófila (DAT) y la Hidrólisis Térmica (HT), dos tecnologías en auge en digestión de lodos, pero cuyas sinergias son desconocidas.

Objetivo

Desarrollo experimental de la configuración óptima de la línea de lodos de EDAR mediante la integración de las tecnologías de HT y DAM y/o DAT para una mejora sustancial en:

- Eficiencia en la valorización energética de los residuos (biogás)
- Producto final (digestato) higienizado
- Línea de tratamiento con mayor flexibilidad y robustez así como ensayos de reología avanzada para la optimización de la agitación y, por tanto, la eficiencia energética del proceso.

Configuraciones estudiadas, combinando hidrólisis térmica (HT) y digestión de lodos mesófila (DAM) y/o termófila (DAT)

Escenarios	Tipo de digestión	Configuración	Denominación del esquema
ESCENARIO 1	Mesófila	Mixto DAM	DAM_1
	Termófila	Mixto DAT	DAT_1
	Doble etapa (mesotermo)	Mixto DAM	DADE_1
ESCENARIO 2	Mesófila	Mixto HT DAM	DAM_2
	Termófila	Mixto HT DAT	DAT_2
	Doble etapa (mesotermo)	Mixto HT DAT DAM	DADE_2
ESCENARIO 3	Mesófila	1° DAM 2° HT	DAM_3
	Termófila	1° DAT 2° HT	DAT_3
	Doble etapa (mesotermo)	1° DAM 2° HT	DADE_3
ESCENARIO 4	Mesófila	1° DAM 2° HT	DAM_4
	Termófila	1° DAM 2° HT	DAT_4
	Doble etapa (mesotermo)	1° DAM 2° HT	DADE_4
ESCENARIO 5	Mesófila	Mixto DAM HT DAM	DAM_5
	Termófila	Mixto DAM HT DAT	DAT_5

Conclusiones

- La hidrólisis térmica (HT) incrementa la biodegradabilidad de los lodos secundario y digerido, y reduce su viscosidad.
- La digestión termófila (DAT) y la combinación de HT y digestión (DADE) no incrementan la producción de biogás.
- Las configuraciones más atractivas parecen ser: hidrólisis y digestión de lodo mixto (DAM_2), hidrólidis de lodo secundario y codigestión termófila con primario (DAT_3), hidrólidis de lodo secundario y codigestión termófila con primario predigerido (DAT_4), y doble etapa meso-termófilo (DADE_1).
- La ubicación de la etapa de HT tiene un impacto relativamente modesto en la producción de metano. El óptimo depende de parámetros económicos (CAPEX y OPEX).

Etapas del Proyecto

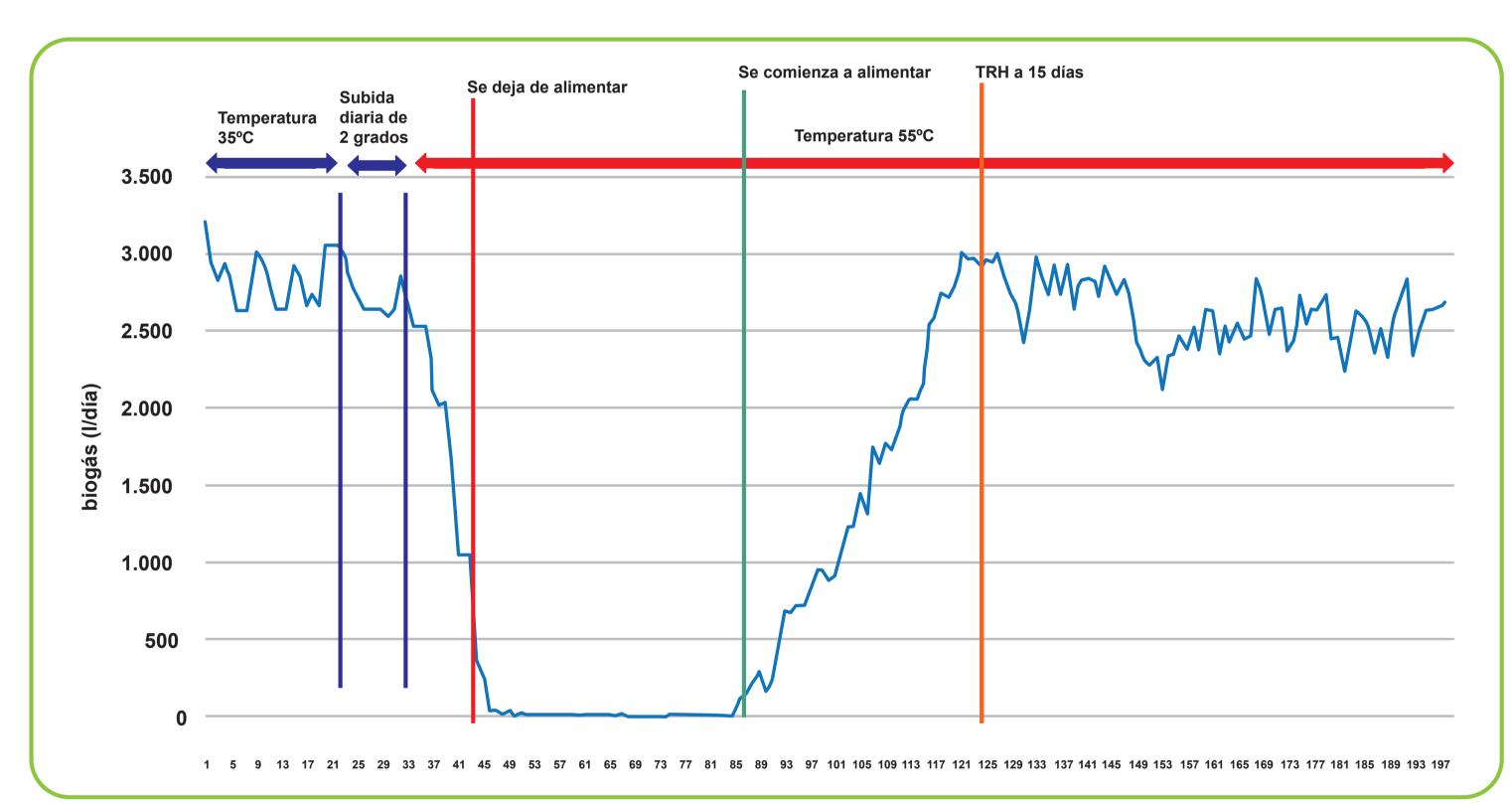
Ensayos Ensayos en cóntínuo Transición DAM-DAT Caracterización reológica Configuraciones óptimas Escala piloto Experimentación en planta piloto Escalado teórico de los resultados piloto a la EDAR COPERO

Caracterización físico-química y bioquímica de los lodos frescos

		LODO PRIMARIO	LODO SECUNDARIO	LODO MIXTO	LODO DIGERIDO
Caracterización físico-química	ST (g/kg)	24,46	45,79	32,99	22,78
	SV (g/kg)	17,93	31,99	23,55	12,92
	% SV	73%	70%	71%	57%
	DQO total (g/kg)	30,72	45,59	36,67	17,89
	DQO sol. (g/kg)	3,06	1,57	2,46	0,4
	%DQO sol.	10%	3%	7%	2%
	NKT (g/kg)	0,98	2,95	1,77	1,61
	N-NH4 (g/kg)	0,21	0,49	0,32	0,73
	% N-NH4	21%	17%	18%	45%
Caracterización bioquímica	Carbohidratos (% m.s.)	40,6%	32,7%	35,9%	24,7%
	Proteínas (% m.s.)	12,3%	32,8%	24,6%	30,7%
	Lípidos (% m.s.)	20,4%	4,4%	10,8%	1,3%
	Cenizas (% m.s.)	26,7%	30,1%	28,8%	43,3%

Ensayos de reología avanzada para la optimización de la agitación.

Comparación de las viscosidades experimentales en función del gradiente de velocidad para los distintos lodos a escala de laboratorio y de la EDAR.


La HT reduce muy significativamente la viscosidad del lodo (reducciones de 60%-90%)

Transición de digestión anaerobia mesófila a termófila:

Transición choque térmico, volumen de biogás experimental producido.

Volumen de biogás experimental (l/día) choque térmico

La estrategia de choque térmico, aumentando la temperatura en un sólo paso, demostró ser una transición de régimen mesófilo a termófilo más rápida que la del aumento progresivo y por fases de la temperatura, sin presentar ninguna desventaja significativa.

Comparativa inicial de configuraciones (CAPEX y OPEX) escala de laboratorio:

ESCENARIOS		BIOGÁS	BIOSÓLIDO	CAPEX		OPEX
		Vs. control	Higieniza	Vol. digestión	Capacidad HT	Uso energía
DAM	DAM 1	-	No	-	-	Bajo
	DAM 2	+41%	Sí	Bajo	Alta	Bajo
	DAM 3	+42%	No	Вајо	Baja	Bajo
	DAM 4	+33%	No	Alto	Baja	Bajo
	DAM 5	+40%	Sí	Alto	Alta	Alto
DAT	DAT 1	+2%	?	Bajo	-	Alto
	DAT 2	+42%	Sí	Bajo	Alta	Bajo
	DAT 3	+42%	?	Bajo	Baja	Bajo
	DAT 4	+32%	?	Alto	Baja	Bajo
	DAT 5	+39%	Sí	Alto	Alta	Alto
DADE	DADE 1	+38%	?	Bajo	-	Alto
	DADE 2	+41%	Sí	Bajo	Alta	Bajo
	DADE 3	+43%	?	Bajo	Baja	Bajo
	DADE 4	+33%	?	Bajo	Ваја	Bajo

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

